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P O m  SPECTRAL MEASUREMENT O F  ATMOSPHERIC TURBUI;ENCE 

I N  SEVERE STOW AND CUMULUS CMUDS 

By Richard H. Rhyne and Roy Ste iner  
Langley Research Center 

SUMMARY 

The report  summarizes power spec t ra l  data  of atmospheric turbulence obtained 
by the  NASA from recent f l i g h t s  i n  severe storms and cumulus clouds. For com- 
pleteness, previously published spectra  are included. These spectra  are similar 
i n  shape t o  those obtained i n  c l ea r  a i r  at  a l t i t udes  below 5,000 f ee t .  The power 
var ies  inversely with frequency t o  the  f ive- th i rds  power. 

As an indication of t he  turbulence intensi ty ,  values of root-mean-square 
gust veloci ty  determined from t h e  measured spectra ranged from approximately 
6 t o  16 f t / s ec  f o r  t h e  severe-storm traverses  and from about 3 t o  9 f t / s ec  f o r  
the  cumulus-cloud t raverses .  Storm turbulence was found t o  be homogeneous and 
s ta t ionary,  i so t ropic ,  and Gaussian t o  a degree su f f i c i en t  f o r  many p rac t i ca l  
applications.  Values of L, a scale  parameter required i n  the  ana ly t ica l  rep- 
resentation of t he  spectra,  were obtained f o r  f i v e  storm traverses .  The values 
obtained range from approximately 2,700 t o  5,600 feet. 
i s  needed t o  more completely define the  f ac to r s  on which L i tself  depends. 

Additional investigation. 

INTRODUCTION 

During the  pas t  decade more and more i n t e r e s t  has been focused on the  
description o f  atmospheric turbulence a s  a continuous process and on the  use of 
power spec t ra l  techniques i n  the  analysis  of turbulence and t h e  associated 
dynamic load and motion response of a i rplanes.  Today, a i rplane designers a r e  
turning t o  spec t ra l  techniques t o  check t h e i r  design, although power spec t ra l  
methods have not as ye t  been o f f i c i a l l y  incorporated in to  design requirements 
a s  such. For use i n  such design s tudies ,  experimentally determined spectra of 
atmospheric turbulence i n  c l ea r  a i r  a t  r e l a t ive ly  low a l t i t u d e s  (below 
3,000 f e e t )  have been col lected by t h e  National Aeronautics and Space Adminis- 
t r a t i o n  (refs. 1, 2, and 3 )  and by others  ( re fs .  4 and 5 ) .  

The present report  summarizes power spec t ra l  data  obtained by the  NASA 
from f l i g h t  t e s t s  i n  severe storms and cumulus clouds. 
defined herein as convective storms with su f f i c i en t  energy t o  bui ld  through the  
tropopause t o  an a l t i t u d e  of a t  l e a s t  40,000 feet  and a r e  usually thunderstorms.) 
Turbulence, when associated with t h e  more severe convective ac t iv i ty ,  can pro- 
duce extremely severe loads, i n  f ac t ,  t he  highest  loads which transport-type 
airplanes may ever experience during normal operations. The severe-storm 
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penetrations were made in the vicinity of Tinker Air Force Base, Oklahoma, in 
conjunction with the National Severe Storms Project (refs. 6 and 7), and con- 
sist o f  11 different penetrations (three separate storms) at altitudes ranging 
from 25,000 to 40,000 feet. 
ity of Langley Air Force Base, Virginia, f r o m  nine traverses which ranged in 
altitude from 7,000 to 15,000 feet. 
both of these investigations have been published in references 8 and 9. 

The cumulus-cloud data were obtained in the vicin- 

Initial samples of the data obtained from 

The data are generally presented in the form of power spectra of the ver- 
tical and lateral components, and where available, the longitudinal component of 
atmospheric turbulence. Estimates are made of the statistical properties of the 
turbulence and of the conformity with a random stationary Gaussian process. The 
two parameters, the scale of turbulence L and the intensity of turbulence u, 
used in the analytical representation of turbulence spectra are discussed from 
the viewpoint of determining numerical values of the parameters by experimental 
and analytical methods. 

SYMBOLS 

Wa 

"f.3 

2 

2 lateral acceleration, positive to right, g units or ft/sec 

longitudinal acceleration, positive forward, g units or ft/sec2 

normal acceleration, positive downward, g units or ft/sec 

acceleration due to gravity, 32.17 ft/sec2 

2 

frequency-response function 

distance from accelerometer to angle-of-attack and angle-of- 
sideslip vanes, ft 

scale of turbulence, ft 
E' 

autocorrelation function, autocovariance function 

autocovariance function at T = 

distance, ft 

time, sec 

specified time, sec 

true airspeed, ft/sec 

airplane vertical velocity, positive downward, ft/sec 

vertical component of gust velocity, positive upward, ft/sec 
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lateral component of gust velocity, positive to right, ft/sec 

longitudinal component of gust velocity, positive in direction of 
flight path, ft/sec 

arbitrary input disturbance 

vane-indicated angle of attack, positive trailing edge up, radians 

angle of attack due to gust, positive direction as sketched 16 
ffgure 2, radians 

vane-indicated angle of sideslip, positive trailing edge left, 
radians 

pitch angle, positive nose up, radians 

pitch velocity, positive nose up, radians/sec 

wavelength, f t 

air density, slugs/cu ft 

sea-level air density, slugs/cu ft 

root-mean-square deviation 

root-mean-square deviation determined from area under spectrum 

root-mean-square deviation of vertical component of gust velocity, 

time lag, sec 

power spectral density function 

roll attitude, positive right wing down, radians 

yaw attitude, positive nose right, radians 

yaw velocity, positive nose right, radians/sec 

circular frequency, radians/sec 

spatial frequency, u)/V, radians/ft 

A bar over a symbol denotes a mean value. 
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METHOD AND TESTS 

General 

The power spectra presented herein were determined from measurements made 
during airplane flight penetrations of the clouds. The power spectra were 
obtained from Fourier transforms of the autocovariance functions of the time 
histories of the vertical, lateral, and longitudinal components of true air 
velocities encountered by the survey airplane. The time histories of true air 
velocities were in turn obtained from sensors located on a boom extending ahead 
of the nose of the airplane and corrected for the motions of the sensors them- 
selves. The sensors located on the boom consisted of mass-balanced balsa flow 
vanes for the vertical and lateral components, and a sensitive airspeed meas- 
uring system (Pitot-static test head and associated pressure cells) for the 
longitudinal component. Most of the airplane-sensor motions were measured 
directly. Details of obtaining the component time histories are given in 
appendix A. 

Airplanes 

Jet-propelled airplanes of the fighter and trainer types were used in the 
cumulus-cloud and severe-storm investigations, respectively. The airplanes 
were selected on the basis of relatively high structural strength to withstand 
the intensity of the turbulence expected and on the basis of good handling 
qualities. With the use of the present method of correcting the flow-vane 
measurements for airplane motions, the particular airplane used is not signifi- 
cant with respect to the data obtained, since it is used solely as a platfom 
for transporting the instrumentation. 

1NS"MENTATION 

Similar instrumentation was installed on each airplane to provide for con- 
tinuous recording of airflow direction, airspeed, and airplane motions. 

The airflow direction was obtained from mass-balanced balsa flow vanes 
mounted on a boom extending ahead of the nose of the airplane to measure the 
angle of attack and angle of sideslip. The flow vanes were located approxi- 
mately 5 feet ahead of the nose for both airplanes. A photograph of the boom 
installation for the cumulus-cloud airplane is shown in figure 1; the boom 
installation for the severe-storm airplane was similar. 

Airspeed (and altitude) was obtained from an airspeed-altitude recorder in 
conjunction with a special Pitot-static test head installed on the boom forward 
of the flow vanes. (See fig. 1. ) The pressure cells and recorder were located 
in the nose of the airplane. The resulting tubing, required to run the length 
of the boom, made necessary a dynamic calibration of the complete airspeed 
system. (The dynamics of the system had to be properly accounted for in order 
to determine the longitudinal turbulence spectrum.) The dynamic calibration 
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was accomplished by impressing sinusoidally varying pressures of known magni- 
tude and frequency on the probe and recording the result. 

The natural frequencies of the boom installations were approximately 12 cps 
for the cumulus-cloud airplane and 14 cps for the severe-storm airplane. 
boom natural frequencies were not discernible as such on the flow-vane records 
of either of the two airplanes. 
linear) which could produce errors at the airplane short-period stability-mode 
frequency (approximately 1/2 cps) were measured by applying concentrated loads 
at the location of the vane transducer masses. Estimates indicated that 
resulting deflections would produce errors well within the experimental accuracy 
of the data, and therefore, the effects of boom elasticity were neglected. 

The 

Static boom deflections (both angular and 

Instrumentation for measurement of airplane motions included a three- 
component recording accelerometer mounted near the center of gravity and 
recorders for measuring pitching and yawing velocity and angular displacement 
about the three axes. 
and a statoscope, which is a sensitive device for measuring incremental static 
pressure. 
second. 
urements. Two marker switches for indicating events such as cloud entry and 
precipitation were available to the pilot. The ranges, sensitivities, natural 
frequencies, and damping of the instruments used for the severe-storm traverses 
are given in table I, together with the estimated overall accuracy of the 
recorded quantities. The instrumentation used for the cumulus-cloud traverses 
was somewhat more sensitive and slightly more accurate for a few of the 
quantities. 

Secondary instrumentation included a temperature recorder 

The film speed for all records was approximately one-half inch per 
An 0.1-second interval timer was used to synchronize the various meas- 

TEST CONDITIONS 

Flights were made in both small and large clouds at several altitudes for 
the two flight investigations. The individual types of investigations are as 
follows : 

Severe-Storm Flights 

Table I1 summarizes the data obtained from the severe-storm flights. The 
flights were made in the 1960 operations of the National Severe Storms Project. 
Attempts were made to investigate the variation of turbulence with time in large 
severe storms, the variation of turbulence with altitude, and the variation of 
turbulence among the cells of storms or squall lines. 

A flight of May 4, 1960, was made as an altitude survey through a single 

On the first 
storm area. The altitudes surveyed were 40,000, 35,000, 30,000, and 25,000 feet. 
Two traverses were made through a severe storm on May 16, 1960. 
traverse at an altitude of about 38,000 feet, severe hail was encountered. The 
second traverse was made at 40,000 feet, and again severe hail was encountered. 
The flight was then aborted because of the hail damage sustafned, and the 
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aircraft returned to base. 
the wing-tip tanks, in addition to damage to air scoops and leading edges.) 

(One "baseball size" hail dent was found in one of 

Five traverses were made through the storm of May 17, 1960, at an altitude 
of approximately 39,000 feet. 
45,000 feet, and the cloud grew in size from approximately 7 miles in diameter 
to over 20 miles in diameter during the 38 minutes while the traverses were 
being made. The time required to complete an individual traverse varied from 
about 70 to 200 seconds. 

The maximum height of the cloud was about 

Table I11 summarizes the data obtained from the cumulus-cloud flights. 
Flights were made through small cumulus clouds in the vicinity of Langley Air 
Force Base, Virginia, to obtain turbulence measurements for small clouds in 
contrast to the severe storms discussed previously. The flight lengths (in 
terms of time, as an indication of the cloud diameter) were 26 to 57 seconds as 
compared with 70 to 300 seconds for the severe-storm flights. 
of 7,000 to 15,000 feet was investigated in nine traverses through four cloud 
areas. 

An altitude range 

Loss of Data 

Water collected in the test probe and damped out the high-frequency pressure 
fluctuations; thus, an evaluation of the longitudinal component of gust velocity 
for all of the severe-storm traverses and all but the first four cumulus-cloud 
traverses of table I11 could not be made. 

DATA REDUCTION 

The data-reduction procedures used involved three steps: 

(a) Evaluation of the time histories of the pertinent measurements and com- 
bining these time histories to obtain the components of gust velocities 

(b) Evaluation of the power spectra of the components 

(c) Evaluation of other statistical characteristics of the turbulence time 
histories, such as root-mean-square gust velocities, probability distribution, 
and the turbulence scale parameter L 

Time Histories 

All the measured quantities required for the determination of the vertical, 
lateral, and longitudinal components of turbulence were read at 0.05-second 
intervals and combined according to equations (&), (A3), and (Ah) of appendix A. 
All the quantities under the integral signs were numerically integrated by use 
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of the trapezoidal rule. This method of integration attenuates the integrated 
values at the higher frequencies, but this is not considered serious since for 
the reading interval used the reduction would only be about 5 percent at 
2.5 cps. The time histories of the integrated quantities have a predominant 
frequency in the vicinity of 1/2 cps, with very little "power" beyond a fre- 
quency of about 1 cps. 

Power Spectra 

The general procedure of obtaining power spectra from the time histories 
is reviewed briefly in appendix A. 
tigation are given here. For all the power spectra the time histories were 
first prewhitened (see ref. 3 )  by the following procedure: 

Details pertinent to this particular inves- 

~'(t) = x(t) - x(t - At) 
where x'(t) is the prewhitened time history used to determine the autocovari- 
ance function and resulting spectrum. The autocovariance functions were deter- 
mined from 0.05-second interval readings for 60 lags. 
spectral calculations should yield 61 power estimates uniformly spaced over the 
frequency range of 0 to 10 cps, the first estimate for zero frequency cannot be 
determined because of the prewhitening process. There remain, therefore, 
60 power estimates for the frequency range of 0.167 cps to 10 cps. 
quency range is considered adequate for airplane response calculations since it 
usually includes the short-period stability mode and several of the wing 
structural modes. 

Although the resulting 

This fre- 

In a few cases autocovariance functions were determined from the non- 
prewhitened time history of the vertical turbulence component by utilizing 
0.1-second interval readings and 240 lags. 
not used to determine spectra (the side lobes of the effective digital "spectral 
window," or  filter, would have introduced too much distortion), but were used in 
determining the scale parameter L discussed in the following section. 

These autocovariance functions were 

Analytical Representation of Spectra 

In application of the spectra to loads or response calculations, it is con- 
venient to represent the spectra by some analytical form. 
representations of turbulence'spectra have been used in the past in connection 
with wind-tunnel turbulence studies (refs. 10 and 11). Two of these represen- 
tations for transverse velocities are considered in some detail in reference 9 
for application to atmospheric turbulence.* The expression arrived at for iso- 
tropic turbulence whose basic form is attributed to Von K&m& (ref. 12) is: 

Several analytical 

@(a) = 2 L  - 
R 
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The other spectral representation, which has been used somewhat more 
extensively for atmospheric turbulence (see refs. 13 and 14, for example), is: 

2 L  1 + 3L202 @(a)  = - 
. (1 + nW)2 

where for both expressions (1) and (2): 

c? mean-square value of turbulence velocity 

L scale of turbulence 

n spatial frequency defined by 2sr/A, where A is the wavelength of a 

It can be shown that at the higher frequencies (i.e., the frequency range covered 
by the experimental spectra and of primary iaportance to conventional aircraft), 
the spectral power as represented by equation (1) varies in proportion to 

n-5/3, and for equation (2) in proportion to The question then arises as 
to which of the preceding spectral representations best fits the data, and what 
means are necessaryto determine the parameters Q and L. Various methods of 
determining these two parameters are discussed in the following paragraphs. 

sinusoidal component 

Two different values of the root-mean-square gust velocity u are useful, 
The one most easily and accurately obtained from experimental as will be seen. 

data is simply the square root of the area under the measured spectrum, that is, 
the truncated values obtained as the square root of the area contained between 
the low- and high-frequency values of the spectral estimates. The values of 
generally given for the present test data were obtained in this manner and 
represent good estimates of the relative turbulence intensities represented by 
the various spectra since they all cover essentially the same range of 
frequencies . 

m e  other and perhaps more significant value of IS (since it is the one 
required in analytical representations (1) and (2)) is the square root of the 
total area under the spectrum extending from zero to infinite frequency. 
mentally this value of 
initial value of the autocovariance function 
appendix A) of the "raw" (that is, non-prewhitened) time history of gust veloc- 
ity. Several methods of determining a numerical-value of L are available and 
are explored in detail in reference 9. An evaluation of L may be made 
directly from the truncated power spectrum, assuming either analytical repre- 
sentation (1) or ( 2 ) ,  provided R(W, the initial value of the autocovariance 
function of the non-prewhitened time history, is known. 

Experi- 
(I can only be determined as the square root of the 

(Rx(0) of equation (A6) in 

For analytical representation (1) 
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and for analytical representation (2) 

where 

dw = R(0)1/2, or the value of d to zero frequency 

d determined from the square root of the area under the truncated 
spectrum 

61 

a1 

a0 

These latter expressions (eqs. ( 3 )  and (4)) were used herein to determine values 
of L from the experimental data since they were convenient to use and resulted 
in values relatively close to those obtained by the other methods of reference 9. 

low-frequency end of the truncated spectrum 

high-frequency end of the truncated spectrum 

Additional Turbulence Characteristics 

In general, application of power spectra to the calculation of the various 
responses of airplanes to turbulence is greatly simplified if the turbulence can 
be considered as a random process characterized by the following properties: 

(a) Homogeneity 

(b) Stationarity 

(c) Gaussian distribution 

(d) Isotropy 

These properties have been found to apply within limits to clear-air 
turbulence. (See ref. 14.) Isotropy is briefly discussed in the following 
paragraph, because the term as applied to atmospheric turbulence is not fully 
standardized. 

Isotropy as applied to atmospheric turbulence is defined herein as the 
invariance of the statistical characteristics of the turbulence with the airplane 
flight direction along any horizontal axis. Some indication of isotropy (or the 
lack of isotropy) can be obtained by the comparison of the various components of 
the turbulence measured simultaneously during any one traverse. As a consequence 
of isotropy a definite relation exists between the spectra of fluctuations 
measured perpendicular to the aircraft flight path (vertical and lateral spectra) 
and the spectra of the fluctuations measured along the aircraft flight path 
(longitudinal spectra). This relation presented in reference 14 is 
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where hg(n) and hg(S2) are the vertical and lateral spectra and Qug(R) is 
the longitudinal spectrum. 
longitudinal spectrum, and experimental spectra generally contain some erratic 
fluctuations, it is best to fair a smooth curve through the data or fit one of 
the analytical representations to the data before attempting to use equation (5) 
to check isotropy. (Eq. (5) is equally applicable to the analytical representa- 
tion of the turbulence spectrum as given by eq. (l), or to that given by 

Since equation ( 5 )  contains the derivative of the 

eq. m.1 

RESULTS AND DISCUSSION 

The results and discussion are divided into four sections. The first sec- 
tion covers the time histories of the various components of turbulence, and the 
maximum values obtained in severe storms. The second section is devoted to the 
spectra obtained; the next section, to some assessment of the homogeneous, sta- 
tionary, Gaussian, and isotropic characteristics; and the final section, to 
analytical representation of the spectra, in particular, the scale of 
turbulence L. 

Time Histories 

The time histories shown in figure 3 are believed to be the first detailed 
measurements of the vertical and lateral components of the actual airflow 
obtained in severe storms. The traverse in figure 3(a) was chosen for illustra- 
tion because it was quite intense and included portions of the time history out- 
side the visible cloud. In this traverse a predominant up-flow is apparent in 
the center of the cloud and down-flow near each edge. 
bulence intensity appears to exist between the two components. 
illustrates a portion of a traverse of considerably lower intensity at a lower 
altitude. The portion shown is the roughest part of this particular traverse. 
The cumulus-cloud traverses present a sMlar picture, with a considerably 
lower intensity. 

Some correlation in tur- 
Figure 3(b) 

The location of the zero for the two velocity components given in figure 3 
is somewhat arbitrary with regard to absolute values of vertical or lateral 
airflow. 
much as the data-reduction technique was based on incremental values from the 
mean. (See eq. ( M ) . )  A trend in the time history of the lateral component in 
figure 3(a), which starts at about -70 ft/sec at cloud entry and ends at approxi- 
mately 20 ft/sec, may or may not be real, but could result from the data- 
reduction procedure employed. Such a trend would, of course, affect values of 
a obtained from the "raw" time history (square root of initial value of auto- 
covariance function). In the spectral-data-reduction procedures, however, such 
effects have been effectively suppressed by the prewhitening procedure used, 
and do not fall within the frequency range covered by the power spectra. 
values of thus derived from the areas under these truncated spectra are 
believed to be essentially free of such effects. 

The values plotted represent fluctuations about a mean airflow inas- 

The 
61 
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Table I1 summarizes the results from the severe-storm traverses which have 
been evaluated from the flights made in 1960. 
range of maximum gust velocities obtained from the time histories. Of consider- 
able interest is the maximum value of vertical gust velocity of 208 ft/sec 
encountered in traverse 2 of May 16, 1960. 
velocity superposed on a large disturbance which had a half wavelength of almost 
5,000 feet. 
was rising at a vertical velocity of 83 ft/sec. 
this point, however, was only about 18 ft/sec/sec. 
severe hail was being encountered, and the lateral turbulence probe (sideslip. 
vane) was damaged by the hail. 

Attention is called to the wide 

This value represents a peak gust 

At the peak the airplane had a nose-down attitude o f  about loo but 
The vertical acceleration at 

At about this same time 

Spectra 

General characteristics.- The ordinates for all of the spectral plots are 
given in theunit of (ft/sec)2/radians/f't, with the abscissa being reduced, or 
spatial, frequency R given in radians/ft. The data are plotted against spatial 
frequency in order to remove the effects of variations in flight speed from run 
to run. 
logarithmic) in feet is also shown for convenience in interpreting the data. 
As can be seen, the wavelengths covered by the spectra range from about 60 feet 
to 3,600 feet. The spectra all exhibit similar shapes characterized by 
decreasing power with increasing frequency. The slightly more erratic appearance 
of the plots at the high-frequency end results mainly from the closer spacing 
of the power estimates at this end when shown on a logarithmic scale. 
points are evenly spaced on a linear scale.) 

Both the scales are logarithmic. A wavelength scale (reciprocal 

(The 

Values of ul for the vertical, lateral, and longitudinal components of 
gust velocity are shown on the spectral plots and are also given in tables I1 
and 111. The values were obtained from the truncated spectra and are directly 
comparable with each other since they cover essentially the same frequency range. 
These values of 
relative turbulence intensity for the various traverses (particularly for 
than are the maximum and minimum values of gust velocity, since the values of 
U l  are essentially free of uncertainties as to the linear trend effects pre- 
viously mentioned. 

Vari-ationcwith . -  time, severe storms.- Spectra obtained for five successive 
traverses of the same storm and.at approximately the same altitude are shown in 
figure &(a) for the vertical component, and in figure 4(b) for the lateral 
component. The range of power spectral density @ ( R )  covered by all the curves 
for this storm is on the order of a factor of 4. The relative intensities of 
the turbulence for the five traverses are perhaps more apparent from the values 
of for the vertical component of gust velocity plotted in the upper portion 
of figure 5. These values are plotted against time, from the start of the first 
traverse. The lower part of the figure shows the extent of the visible cloud at 

al are probably of somewhat more value as an indication of 

vg) 

ul 

the altitude 
with rate of 
beginning of 
cloud growth 

and time-of each traverse. 
cloud growth seems to be indicated, that is, rapid growth at the 
the traverse with high intensity for the first traverse and more 
between traverses 3 and 4 with a corresponding increase in 

Some correlation of turbulence intensity 

al. 
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Probably the most important indication of figures 4 and 5 is that the power 
levels vary by a factor of 4 (crl varies by a factor of 2) in essentially the 
same part of the storm and at the same altitude in a matter of only 20 minutes. 

Figure 6 shows spectra of extremely severe turbulence in another storm 
which persisted at a high level of intensity (9 
least 12 to 15 minutes, and possibly longer. This particular storm of May 16, 
1960, is believed to have contained the most severe turbulence ever penetrated 
by an aircraft from which successful detailed flow measurements were made. 
u're 6(a) shows spectra of the vertical and lateral components from traverse 1; 
and figure 6(b), from traverse 2, which started 12 minutes after tra%erse 1. 
Severe hail was encountered on traverse 1, and consequently traverse 2 was made 
2,000 feet higher. 
craft returned to base to be inspected for damage. This storm was growing in 
height during the time of the traverses. 
the area flying level with the top of the storm indicate a height of 42,000 feet 
at about the start of traverse 1 and approximately 5O,OOO feet at about the time 
traverse 2 ended. 

of 15 to 16 ft/sec) for at 

Fig- 

Severe hail was also encountered on traverse 2, and the air- 

Pilot reports from other aircraft in 

Variations with altitude, severe storms.- A flight, made May 4, 1960, sur- 
veyed a storm at 5,000-foot-altitude intervals. 
the vertical and lateral components obtained at altitudes from 40,000 to 
25,000 feet. 

Figure 7 shows the spectra of 

Table I1 gives the local time at the start of each traverse, and as can be 

After noting the wide variations in intensity possible in 
seen, approximately 35 minutes elapsed between the start of traverse 1 and the 
start of traverse 4. 
20 minutes or less from data presented in the preceding section, it would seem 
that little could be concluded from these data as regards intensity variation 
with altitude of traverse only. The important thing to note, however, is that 
the turbulence spectra retain approximately the same shape at all altitudes. 

Cumulus clouds.- The power-spectral-density curves for the vertical, lat- 
eral, and longitudinal components of turbulence in cumulus clouds are shown in 
figure 8. As can be seen from table 111, these spectra were obtained on 4 
different days over a period of 6 months during the spring and summer seasons. 
Blanks in the table are an indication of instrumentation failures or water 
collecting in the Pitot-static head of the sensitive airspeed system as mentioned 
previously. The cumulus clouds cover a wide range of size and extent of verti- 
cal development, and the penetration altitudes ranged from 7,200 feet to 
15,000 feet. These spectra exhibit an orderly and rapid decrease in power with 
increasing frequency similar to the spectra for the severe storms. The level of 
intensity, however, is generally less than that for the severe-storm turbulence. 
The range of power at a given frequency is approximately the same for the verti- 
cal and lateral components of gust velocity, with the longitudinal component 
somewhat lower. 

It should be noted that the time histories from which the cumulus-cloud 
spectra were obtained were generally much shorter in length than were those for 
the severe storms. For this reason, the cumulus-cloud spectra contain somewhat 
more erratic power fluctuations. 
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Traverses 4a to 4c (fig. 9 )  were of special interest in that they were made 
in a developing cumulonimbus cloud through areas of precipitation m d  nonprecipi- 
tation. Inspection of the records clearly indicated an increase in turbulence 
level upon entering the precipitation area of the cloud. For this reason, the 
data were separated into precipitation and nonprecipitation portions. Tra- 
verse 4a and traverse 4b were actually parts of the same continuous pass through 
the cloud, on the same heading and altitude, as noted in table 111 and fig- 
ure 9(a). 
nents of gust velocity f o r  the precipitation portion of the cloud are at a con- 
siderably higher power level than are the components for the nonprecipitation 
portion. 
mately reciprocal heading back through the same cloud but at an altitude of 
about 800 feet lower. 
are consistent with those obtained for the first pass in that the power for the 
precipitation area is still appreciably higher for both components. There does 
not appear to be any consistent difference between the shape of the spectra 
obtained for precipitation areas as compared with nonprecipitation areas. 

As can be seen in figure 9(a), both the vertical and lateral compo- 

Figure 9(b) presents data obtained about 6 minutes later on an approxi- 

Results obtained for the second pass through the cloud 

Comparispns with-clear-air turbulence.- Typical spectra of the various 
severe-storm and cumulus-cloud spectra just presented are compared with a typical 
clear-air turbulence spectrum in figure 10. The clear-air turbulence spectrum 
was obtained from reference 2. These spectra show two general features: the 
similarity of the slopes of the spectra, and the variation in the intensity of 
turbulence with weather conditions as indicated by the relative height of the 
curves. Many samples in each weather condition would undoubtedly yield over- 
lapping bands of spectra. Thus, it appears that turbulence intensity extends 
over a continuous range of a from values near zero to relatively large values. 
( A  value of 16 ft/sec for the truncated is the maximum measured to date.) u 

Statistical Characteristics 

Homogeneity and stationarity.- As seen in the previous sections, the tur- 
bulence varied considerably at different times and locations throughout the 
storms. In order to investigate the degree of homogeneity and stationarity of 
the turbulence for measurements as near the same time and location as possible, 
one of the severe-storm traverses of table I1 was arbitrarily divided into two 
equal parts and the spectra of the parts compared. Figure 11 gives this compar- 
ison for the vertical component (spectrum of complete traverse previously pre- 
sented in figure 4(a)). 
approximately 12 miles or 97 seconds each. The two spectra agree in general 
form but display slight differences in intensity throughout the entire frequency 
range. It appears, however, that some degree of both homogeneity and station- 
arity can exist in severe storms. In fact, parts (a) and (b) agree with each 
other as well as the two parts of a clear-air turbulence traverse examined in 
the same manner in reference 14. 

The individual spectra cover a flight distance of 

Gaussian tests.- For the turbulence to be Gaussian the fluctuations of the 
turbulence must have a normal probability distribution. It has been customary 
in the past to consider that if a component of the turbulence (vertical 
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component, for instance) has a normal distribution, then for practical purposes 
normality of all components of the turbulence is indicated (ignoring higher 
order Gaussian tests). 

The test for a normal distribution for one of the severe-storm traverses is 
A l l  the vertical-component time histories for the flight of shown in figure 12. 

May 17, 1960, have been examined in a similar manner, and the particular one 
shown appears to be representative. The cumulative frequency distribution of 
the vertical gust velocity, converted to probability, is plotted in the figure. 
The paper is scaled such that a normal probability distribution plots as a 
straight line. 
vertical-gust-component time history, and a fitted normal distribution is shown 
as a solid line. The solid line is determined only by the use of 45 and a 
standard normal-curve-area table. Note that here the u used is that determined 
from the autocovariance function of the raw time history at T = 0. Values of 
both uw and ul are shown in figure 12. It is apparent that the measured 
data approximate the fitted line quite well except at the extremes of the prob- 
ability distribution. 
rather common, and for practical purposes the Gaussian approximation appears to 
be reasonable. 
slightly from a straight line at large values of 

The data plotted are based on the 0.05-second readings of the 

Such departures of experimental data in these regions are 

(Even the measured distributions for clear-air turbulence depart 
wg. See ref. 14, for example.) 

Isotropy.- Isotropy requires that the power spectra of the vertical and 
lateral components (measured simultaneously along the flight path) be equal at 
all frequencies. (See eq. ( 5 )  and previous discussion.) On this basis both the 
severe-storm and cumulus-cloud data present strong indications of isotropy over 
the range of wavelengths of about 60 to 3,500 feet. 

Figure l3(a) compares spectra of the vertical and lateral components for 
one of the rougher traverses and for one of the smoother traverses made at 
39,000 feet in the storm of May 17, 1960. 
vertical and lateral components measured in the storm of May 4, 1960, at 
25,000 feet. 
lence encountered in any of the storms. For the case of cumulus clouds, fig- 
ures g(a) and 9(b) give similar comparisons for the precipitation and nonprecip- 
itation traverses. 

Figure l3(b) compares the spectra of 

Figures 6(a) and 6(b) compare the spectra for the roughest turbu- 

A s  previously mentioned, longitudinal turbulence measurements were success- 
ful for only four of the cumulus-cloud traverses. Of these, only on traverses 1 
and 2 were all three components successfully measured. The spectra are pre- 
sented in figure l3(c) for all three components for traverses 1 and 2. 
as is known, fig. l3(c) represents the only spectral data available in which all 
three components were measured simultaneously from an aircraft.) It is apparent 
that the vertical and lateral spectra are roughly the same with the longitudinal 
spectrum being somewhat lower than the other two in each case. This relationship 
is indicated also by the relative values of 
spec-bra over these frequency ranges tends to indicate isotropy according to 
equation (5). 

(As far 

ul. Such a relationship of the 

Equation (5) relates the power of the vertical or lateral component to that 
of the longitudinal component as follows: 

14 



The preceding relation makes use of equation (1) to represent the spectra of the 
and vertical and lateral components, 

drop-off region of the spectra where the power is proportional to Thus, 
the values of ul 
spectra) should be related by: 

Ovg, and is valid only in the power 
@wg 

Q-5/3 .  
shown in figure l3(c) (obtained from the areas under the 

The ratios obtained for both traverses are slightly higher than 
statistical reliability of the two relatively short samples is such that this 
difference is not believed to be significant. 

J4/3 but the 

Analytical Representation 

By making use of the two analytical representations of turbulence spectra 
previously discussed (eqs. (1) and ( 2 ) ) ,  equations (3) and (4) have been used 
to obtain numerical values of L, the scale of turbulence. Values of L have 
been obtained for the spectra of the vertical component of gust velocity for 
the five thunderstorm traverses of May 17, 1960 (see table I1 for pertinent 
details of the traverses), and are given in table IV. The values of ow and 
a 1  employed in the equations are also given. 

By utilizing the experimental data of traverse 4, the various means of 
obtaining numerical values for L were explored in detail in reference 9. Fig- 
ure 14 (from ref. 9) presents analytically determined autocorrelation functions 
compared with the measured autocorrelation of traverse 4. Two different values 
of L were used for the spectral representation of equation (2). The value 
of L = 3,400 feet approximates the value obtained from the truncated power 
spectm by use of equation (4). The value of L = 4,800 feet, on the other 
hand, approximates the value obtained directly from the autocovariance function 
when it is truncated at a value of r equal to L (essentially the solution 
of two simultaneous equations, discussed in ref. 9). It can be seen from fig- 
ure 14 that the curve for L = 4,800 feet (spectral representation of eb. (2)) 
fits the measured autocorrelation about as well as does the curve for 
L = 5,600 feet 
curve for L = 3,400 feet (eq. (2) representation) does not fit at all well. 

(spectral representation of eq. (1) ) . It is apparent that the 

Figure 15 presents. the spectra corresponding to the autocorrelation func- 
tions of figure 14. It appears that the spectral representation of equation (1) 
for L = 3,600 feet gives a very good fit to the experimental spectra, whereas 
the spectral representation of equation (2) provides a poorer fit for either of 
the values of L as regards slope, with the curve for L = 3,400 feet (the 
worst fit on an autocorrelation basis) producing the better fit. 



It is thus concluded that the equation (1) spectral representation gives 
more consistent results and a better fit to both the experimental autocorrela- 
tion function and spectrum, at least for this particular sample. In addition, 
equation (1) gives a better slope fit for all the samples collected to date. 

As can be seen fromtable IV, values of 
(eq. (1) spectral representation) ranged from about 2,700 feet to 5,600 feet. 
Additional work needs to be done on determining values of 
determining the shape of the power spectra at very long wavelengths, both for 
severe storms and for clear air. 

L obtained from equation ( 3 )  

L, or effectively 

CONCLUDING REMARKS 

An investigation of atmospheric turbulence in cumulus clouds and severe 
storms has indicated that over the wavelength range of approximately 60 to 
3,600 feet, the power spectra are similar in shape to those previously obtained 
in clear air. 
clouds, and severe storms) would undoubtedly yield overlapping bands of spectra 
ranging in intensity from the lowest for light clear-air turbulence to the 
highest for the most severe thunderstorms. The data for severe storms indicated 
that the power spectral density may vary more nearly in proportion to spatial 
frequency R to the minus five-thirds power at the higher frequencies rather 
than V2 as has sometimes been used in the past for clear-air turbulence 
studies. Values of L, a quantity required in the analytical representation of 
the power spectra, may be as large as 5,000 feet for severe-storm turbulence 
above 25,000 feet in altitude. Additional investigation is needed to more com- 
pletely define the factors on which L itself depends. Rough evaluations indi- 
cated that the*turbulence in severe storms can be homogeneous and stationary, 
isotropic, and Gaussian to a degree comparable with that found in clear-air tur- 
bulence. 
for many practical applications. 

Many samples in various weather conditions (clear air, cumulus 

Such assumptions for severe-storm turbulence would probably be valid 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., June 1, 1964. 
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DEXERMINATION OF TlME HISTORIES AND SPECTRA 

OF TURBUiXNCE COMPONENTS 

Time Histories 
,+I 

Vertical component.- The method used to determine the vertical gust 
velocities is essentially that employed by references 1 to 5 and is based on 
flow-direction vane measurements and corrections for the airplane motion. The 
vertical gust velocity is determined from the vane-indicated angle of attack 
and airplane motions by the following equation: 

p 
4 

{I?: 
)$ 
t- 

wg = V% - v0 - wa + 2 6  
! 

A schematic of the airplane flow-vane installation is given in figure 2, showing 
the axis system and sign convention for the various terms. 
also indicated in the symbol list.) 

(Slgn convention is 

Generally, the measurements were read from a reference on the film records 
and incremental values were determined by subtracting the mean for the entire 
record from each individual reading. The airplane vertical velocity could not 
be measured directly but was determined by integration of the center-of-gravity 
normal-acceleration measurements. With these modifications, the actual evalua- 
tion procedures for the vertical gust velocity are given by 

t - 
Wg =V(% - 4) - V(O - e )  -so (a, - G) dt + 2 ( 6  - 6 )  

As a check on the term J ( %  - &)at in equation (A2) which is of appre- 

ciable magnitude in the determination of the vertical component of turbulence, a 
second integration of the term, yielding the incremental vertical displacement 
of the airplane, was compared with the indications of a sensitive altimeter 
(statoscope). 
ending point for the integration as far on either side of the storm as the 
records would allow where the vertical velocity of the airplane was near zero 
(that is, zero slope for the statoscope time history). 
the quantity (a, - &) was then integrated, thus placing the initial and final 
condition for the resulting velocity time history at zero. 
integration was then made, and a new initial condition was determined from the 
results which would force the final point of the second integration, 

The statoscope was first employed to determine a starting and 

Based on this procedure, 

A preliminary second 

andt dt, to agree with the final point of the sensitive-pressure time his- ss 
tory. The two displacement time histories (inertial and pressure derived) were 



then compared at intermediate points along the traverse. 
agreed quite well at the higher frequencies and down to and including frequen- 
cies having a period of 40 to 60 seconds, which was believed to be the phugoid 
frequency of the airplane. The time histories did, however, tend to drift apart 
near the center of the traverses, which is be,lieved to be due to a combination 
of pressure differential within the storm as compared with outside the storm at 
the same altitude, and to very small errors in the initial and final values of 

sandt. (An error of 5 ft/sec in the initial or final value of 

produce an error of l 9 O  feet in the displacement at the midpoint of a 300-second 
traverse, even when the final point is forced to the correct value by the con- 

stant of integration. 

In all cases they 

+dt will s 
) 

Lateral component.- The reduction of the sideslip-angle measurements to 
obtain the lateral component of gust velocity is essentially the same as for the 
vertical component, with the instruments oriented so as to measure the airplane 
motions in the XY-plane rather than the vertical or =-plane. -The lateral com- 
ponent of true gust velocity is given by the equation 

Longitudinal compongn5.- The longitudinal component of the turbulence is 
determined from the airspeed and airplane motions and is given by 

t 
u = V' - (+ - 32.2e)dt Q (A4 1 

- 
where V' = V - V. The term V' for the longitudinal component was obtained 
from the fluctuations (about the mean, 
last term of equation ( A 4 )  which is a correction for the longitudinal response 
of the aircraft was found to be insignificant for the test airplanes over the 
frequency range considered herein (0.167 to 10 cps). 
facilitated corrections to the spectra for the frequency response of the airspeed 
system. This correction to the longitudinal spectra will be discussed in the 
next sect ion. 

- V) of the sensitive airspeed system. The 

The omission of this term 

Power Spectra 

The time histories of vertical, lateral, and longitudinal components of 
gust velocities as evaluated by use of equations ( M ) ,  (A3),  and (Ab)  were used 
to obtain the power spectra of atmospheric turbulence. The procedures used 
were essentially as outlined in references 3 and 13. Basically, the power 
spectrum of a disturbance x(t) is defined by 

18 



where S(T) is the autocovariance function defined by 

The numerical procedures used are outlined in reference 3 for obtaining the 
first raw estimates of power, the final or smoothed estimates, prewhitening of 
the gust velocity, and the conversion of the prewhitened spectrum to the desired 
spectrum ~~(co). 

The determination of the longitudinal spectrum was somewhat different from 
the determination of the vertical and lateral spectra in that an additional 
correction was made to the spectrum for the frequency response of the measuring 
system. The following equation was used for the final determination of the cor- 
rected longitudinal spectrum: 

where cb is the corrected spectrum, Q V t  is the spectrum of the fluctuations, 
and H(u) 
tally by the calibration procedure described in the section entitled 
"Instrumentation. 'I 

is the frequency response of the airspeed system measured experimen- 
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Iu 
Iu 

Vane-indicated angle of s ides l ip ,  radians 

TABLE I 

IMSTRWFEC CHARACTERISTICS 

f0.20 0.46 d4a 105 

Quant i ty  measured and u n i t s  

Impact pressure,  psf 

S t a t i c  pressure,  psf 

Natural  frequency, 
Recording s e n s i t i v i t y ,  

f i l m  def lec t ion  
Range u n i t s  per i n .  of 

0 t o  600 

0 t o  2,200 

'69 t o  77 

f153 t o  320 

l ~ o -  acce lera t ion ,  g u n i t s  I +2 I 2.09 

Incremental s t a t i c  pressure,  inches of water 

Time, sec 

I Late ra l  acce le ra t ion ,  g u n i t s  

7 t o  -9 f1.6 t o  3.1 

0.10-sec pulse h2.0 

~~ ~ 

(Longitudinal acce lera t ion ,  g u n i t s  

I Pi tch  ve loc i ty ,  radians/sec I 0.96 

I yaw ve loc i ty ,  radians/sec 0.49 

I Pi t ch  a t t i t u d e ,  radians 1 50.17 1 0.19 I ( b )  I ( a )  
~~ ~~ 

R o l l  a t t i t u d e ,  rad ians  f0 .52 0.94 ( e >  100 

Yaw a t t i t u d e ,  radians 50.35 0.59 (e )  110 

recorded Sensing Recording quantities 
element element 

0.66 I ( a )  I 0.04 

0.66 I ( a )  I 0.02 

0.66 1 ( a )  1 0.02 

0.65 1 ( a )  I 0.02 

0.65 0.0052 

0.65 0.0035 

e0.7& 1 0.65 1 0.002 

@;For complete P i t o t - s t a t i c  system and recorder i n s t a l l e d  i n  a i rp lane  used i n  cumulus-cloud t r ave r ses  ( sea- leve l  conditions).  
hApproximate f i l m  speed f o r  a l l  recorders,  1/2 inch per  second. 



Average 

d t i tude ,  
IreSSure 

z.L 

True 

hegF, 

Local time 
at start of 
traverse, 

EST 

1238 
1510 
1500 
1502 
1525 

1531 

1535 

Estimated Estimated a1, ft/sec 
cloud cloud Precipitation for  - 

height, base, encountered 
f t  f t  Wg vg Ug 

9,000 4,000 No 7.82 7.77 5.49 
14,000 4,000 No 6.14 5.63 4.52 

4.29 ---- 3.03 18,000 8,000 No ------ No 5.40 ---- 2.83 
x),ooo 1,500 Yes 8.35 8.53 ---- 
------ ----- NO 3.39 4.03 ---- --_--- ----- Yes 8.53 8.16 ---- -- ---- ---- - Yes 9.16 7.91 ---- 

------ ----- No 4.17 5.06 ---- 

Flight 

1 
2 
3 

4 

Sequence 

a 
b 

b 

d 
e 

a 

C 

T U  I1 

S-Y OF SEVERE-STORM TRAVERSES 

hximum wg, 
ft/sec 

[sximum vg, 
f t /sec I al, f t /sec,  

fo r  - 
Average 
true 

tirspeed, 
f t /sec 

Xlration 
of 

;raveme, 
sec 

Estimated 
cloud 

height, 
ft  

40,000+ 
40,000+ 

40,000+ 

50,000 

45,000 
45,000 
45,000 
45,000 
45,000 

40,000+ 

42,000 

Time range 
covered by 

lower spectra 
sec 

Local tim€ 
at start of 
traverse, 

CST 

1548 
1604 
1615 
1623 

1724 
1736 

1622 
1629 

1651 
1656 

1642 

'kecipitatioz 
encountered Date 'raverse 

0 
1 
2 
3 
4 

1 
2 

1 
2 
3 
4 
5 

ight - 
76 
47 
67 
84 

104 
87 

66 
107 
57 
85 
92 

Left - 
-59 
-70 
-50 
-64 

-146 
-93 

-94 
-82 
-56 
-94 
-66 

I C  
(b) 

m 4,1960 239 
308 
220 
258 

290 
198 

72 
147 
152 
195 
202 

214 
304 
210 
255 

177 
139 
C84 

147 
152 
195 
202 

56 

Yes 
No 
No 
Ye s 

Yes 
Yes 

Yes 
No 
No 
Yes 
No 

635 
625 
595 
540 

660 
660 

686 
650 
660 
665 
645 

38,000 
40,000 

39,000 

39,000 
-50 

%!orresponds t o  numbers shown on figures. 
bApproximate heading flown by p i lo t  as taken from tape transcripts of in-flight voice communication. 
' H a i l  damage caused loss of l a t e ra l  sensor (sideslip vane) during traverse. 

TABLE: I11 

SUMMARY OF cuMuLus-cLouD TRAVWSES 

1 1 1 beg,! airspeed, 2: Duration of 
traverse, 

see 

Average 
pressure 
alt i tude,  

f t  

7,200 
11,300 
12,700 
10,000 
15,000 
15,000 
14,200 
14,200 
13,200 

Date 

36.0 
55.4 
57.0 
44.0 
26.0 
42.4 
31.0 
47.0 
51.0 

040 525 
040 525 
210 
210 520 
035 

%!orresponds t o  number shown on figures. 
bApproximate heading flown by pilot  as taken from tape transcripts of in-flight voice communication. 
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34.99 
27.20 
14.47 
32.33 
16.39 

TABU IV 

VALUES OF L OBTAINED FROM SEVERE-STORM TRAVERSES ON MAY 17, 1960, 

FOR USE I N  ANALYTICAL REPRESENTATION OF TURBULENCE SPECTRA 

16.02 4,260 
13.62 3,080 
7.46 2,870 

13-58 5,620 
8.57 2,710 

from - 
Eq. (4) 

2,940 
2,320 
2,230 
3,480 
2, I20 



Figure 1. - Flow-vane and p i t o t s t a t i c  installation. ~59-7612 
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Figure 2.-.Schematic of airplane flow-vane installation, showing axis system and sign convention. Posi- 
tive direction of angles and velocities is shown. 
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(a) Time, histories of vertical and lateral gust components; traverse 1, altitude of 39,000 feet, May 17, 1960. 

Figure 3.- Sample turbulence measurements. 



I 
80 - 
60 - 

of  t r u e  

-40 - 

-60 - 
I I I - .  I .~ --1.. ~ ~ I I I I 

200 210 220 180 190 150 160 170 140 

Time f rom c l o u d  e n t r y ,  sec 

-i,/ I I I I I I I 
17  1 8  1 9  14 1 5  1 6  13 

D i s t a n c e  f r o m  c l o u d  e n t r y ,  n a u t i c a l  m i l e s  

I I I - .  I .~ --1.. ~ ~ I I I I 
200 210 220 180 190 150 160 170 140 

Time f rom c l o u d  e n t r y ,  sec 

-i,/ I I I I I I I 
17  1 8  1 9  14 1 5  1 6  13 

D i s t a n c e  f r o m  c l o u d  e n t r y ,  n a u t i c a l  m i l e s  

(b) Portion of time histories of vertical and lateral gust components; altitude of 25,000 feet, May 4, 1960. 

Figure 3 . -  Concluded. 
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(a) Vertical component. 

Figure 4.- Comparison of power spectra of turbulence measured in successive traverses of severe storm 
of May 17, 1960; altitude of 39,000 feet. 
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Figure 5.- Variation of vertical component of turbulence intensity and cloud diameter with time at 
39,000-foot altitude in severe storm of May 17, 1960. 



5 0 0 , 0 0 [  

100,oot 

+ x 
ld ._ : 10,oot 
t 

a 

": 

N 
h 
0 
m m 

.c 
v 

- 
8 

x + 
._ 
m 
c 
W n 
7 4  
m I 
.+ 
U 
W 
Q m 

L 
W 
i= 
0 
a 

1,000 

100 

Component ul, ft/sec 

w -  1 5 . 5 5  

16.17 

9 

9 
" - - - - - - - 

L I I I I I 1 
1,000 10,000 5 , 0 0 0  1 , 0 0 0  500 100  50 

Wavelength, A, ft 
I I I I __ 10 

Reduced frequency, a, radians/ft 

I 

1 . 0  

(a) Traverse 1, 9,000-foot altitude. 
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in severe storm of May 16, 1960. 
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severe storm of b y  4, 1960. 
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Figure 9.- Comparison of power spectra of turbulence in precipitation and nonprecipitation areas of a 
developing cumulonimbus cloud. 
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Figure 13. - Continued. 

45 

I 



100,00( 

10, ooc 

- 
5 
c m 
Q 

L 

.- 

m; 1,000 
ru VI 

2 

G 

I 

- 
e 
>; 

..d .- 
VI c 
a, n 

m L 
" 
01 a 

- - 
: 100 

a 

10 

1.0 

Traverse Component q, f t /sec 

7.82 
7.77 
5.49 

2 wg - 6.14 
Vg 
- - 5.63 

u - - -  4.52 

l W  9 -- 
v -. . 

u - -  
9 
9 

9 

I- I 1 
10,000 -5,000 1,000 500 

Wavelength, A ,  f t  
d 

I - -. 
100 50 10 

1 .  - -  1 - 2 . -  I -  

Reduced frequency, Q, rad ians/ f t  

I 
1.0 

(c) CumUlus-cloud traverses 1 and 2. 

Figure 13.- Concluded. 
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